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SUMMARY

This report presents the theory of the dynamic response of a linearly
elastic, circular arch, includi'ng the effects of both shear deformation and

rotary inertia. The arch central angle is arbitrary, and the end restraints

are linearly elastic. The theory is extended to include linear viscoelastic%

behavior, in which both arch and end restraints are governed by the same

single linear rate sensitivity parameter.
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1.0 INTRODUCTION

1.1 Purpose

This report presents the theory of the dynamic response of a linearly elastic,

circular arch, including the effects of both shear deformation and rotary

inertia. The arch central angle is arbitrary, and the end restraints are

linearly elastic. The theory is extended to include linear viscoelastic beha-

vior, in which both arch and end restraints are governed by the same single

linear rate sensitivity parameter.

1.2 Motivation

The work described herein is an analytical extension of results presented in

Reference 1. The approach was motivated by Dr. Timothy Ross' success in

explaining direct shear failure of dynamically loaded reinforced concrete box . .
roof slabs using a Timoshenko beam model and an appropriate reinforced

concrete direct shear failure criterion (Ref. 2).

1.3 Application

When the theoretical results presented herein have been evaluated numerically .

for prescribed arch central angle, end restraint, and loading, they will aooiy

to the KACHINA arches tested at the Air Force Weapons Laboratory (Refs. 3-5).

Admittedly reinforced concrete is not always linearly elastic, so application . -
of the theory to the KACHINA arches will require judgment. Nevertheless, the .',

convenience of a closed form solution afforded by elastic theory is too

attractive not to exploit for the perspective it gives on overall dynamic

behavior and the influence of structural and loading parameters.

1.4 Point of Departure

The point of departure for the dynamic analysis is the set of equations for ,

the static behavior of a circular planar member presented by Connor in Chap-

ter 14 of Reference 6. Other related work is presented in References 7-11.

.-. ,-- ..
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Details of the dynamic .analysis are contained in Arpendices A-L. The

discussion in Section 2 below summarizes each appendix in order. Because of

the detailed treatment and the many equations, a few letter symbols have been

used differently in separate appendices. However, symbols are defined where

first used in each appendix, so there should be no confusion. See Appendix M.

2.0 DISCUSSION

" Figure'1 shows a portion of a circular arch, and defines the terms which

control its dynamic response. The arch centerline radius is R, and the

central angle defining a particular plane normal cross section, PQ, in the

undeformed arch is 0. The width and depth of the constant rectangular arch

cross section are b and d. Deformation of the arch causes the centroid of a

. plane cross section PQ to displace tangentially by an amount ul and radially

inward by an amount u2 , and the cross section to rotate through an angle tj;

but the section is assumed to remain plane, so that P*Q* is a straight line.

The distributed tangential, radial, and moment loads acting at point 0 in the

undeformed arch are b1 , b2 , and m. Notice that the angle to is an independent

displacement parameter, so that P*Q* is generally not normal to the deformed

centroidal axis. The angular amount by which section P*Q* deviates from being
normal to the deformed centroidal axis is the arch shear deformation at

point 0.

m Appendix A begins by formulating the equations of motion for a differential

arch element, using the internal stress resultants (Equations A14-A16). Next,

the form of the displacement field is defined by assuming that plane cross

sections normal to the undeformed arch centroidal axis remain plane during

L deformation. This is equivalent to expanding the displacements in a Taylor

- series in two variables about the centroid (arc length and inward radial posi-

. tion) and retaining only the constant and linear terms. Having assumed the

form of the displacement field (Equation A23), the extensional and shear

strains are obtained as functions of the displacement field parameters and

their derivatives with respect to arc length (Equations A31-A33). Three

2I .. . . .-
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strain parameters are defined at the centroid (Equations A34-A36), and then

the strain components anywhere in the arch are expressed as functions of the

strain parameters (Equations A37-A39). Normal and shear stresses are obtained

as functions of the strain parameters, using elastic stress-strain equations

(Equations A40 and A41), and then integrated over the cross section to obtain

the internal stress resultants as functions of the strain parameters

(Equations A42-A44). The stress resultant equations of motion, stress

resultant-strain component equations, and strain component-displacement

equations are summarized in matrix form in Equations A61, A63, and A64. Use

of matrix notation greatly simplifies the entire analysis. It is compact,

helps avoid algebraic errors, and even suggests analytical approaches not

obvious when equations are written out in detail.

The equations of motion in terms of displacement components and their deriva-

tives are obtained in matrix form in Appendix B, by substituting Equation A64

into Equation A63 and that result into Equation A61. The final result is

Equation B17.

Appendix C considers the homogeneous (free vibration) form of the equations of

motion (C2), and uses the classic separation of variables approach to define a

vibration mode (Equation C3). Free vibration in a single mode is shown to be

harmonic (Equation C15), and the mode shapes are shown to obey a coupled set

of three, linear, ordinary, second order differential equations (C18). The A

three, coupled, mode shape differential equations are uncoupled by pre-

multiplying them by the adjoint of the coefficient operator matrix (Ref. 12),

but at the cost of having the resulting three separate identical linear ordi-

nary differential equations be of order six instead of two (Equations

C21-C23).

Equation C20 defines the sixth order, linear, ordinary differential operator,

6, which appears in each of Equations C21-C23. These are the spatial dif-

ferential equations which the mode shapes must satisfy. The operator, A, is

defined as a determinant, which when expanded yields a sixth order polynomial

in the frequency parameter, a, (Equation D17) or a sixth order polynomial in

the spatial differential operator, 0, (Equation 018). Equation 018 is the

more fundamental form, and shows the frequency dependence of its coefficients.

4



The last half of Appendix D discusses the way in which the coefficients in -

.. 41
Equation D18 vary with frequency.

The operator, A, defined by Equation C20 is a sixth order, linear, ordinary

differential operator, but the odd order derivatives are missing. Therefore,

assuming the solution of the homogeneous equation AX = 0 (Equation C21) to be

of the form X = KeAO yields a cubic characteristic equation in A2 (E6).

Whether the parameter A is real, imaginary, or complex depends on the co-

efficients of the cubic equation. Appendix E discusses the algebraic solution

of a cubic equation, as the basis for a detailed examination of the n.ture of

the characteristic roots and their associated mode shape functions, which

appears in Appendix F.

Appendix F examines the fifteen possible characteristic root combinations and

their associated mode functions. The mode functions are a closed set of six

linearly independent functions, in the sense that differentiation of any one

yields a linear combination of the other five.

Appendix G establishes the derivative properties of symmetric and antisym-

metric functions needed to define arch centerline boundary conditions for

symmetric and antisymmetric modes.

Appendix H explains in detail how the natural frequencies and associated mode

shapes are calculated for given arch boundary conditions. The feature which

distinguishes this modal analysis from many others is the fact that the pre-

cise form of the frequency equation is frequency dependent.

Appendix I presents the arch modal orthogonality relations. The approach is

that for a Sturm-Liouville problem, supplemented by Rayleigh's ingenious

application of L'Hospital's Rule to find the integral of the inner product of

a mode with itself over the arch length (Refs. 13 and 14).

Once the free vibration mode orthogonality relations have been established,

the formal solution of a transient forced vibration problem becomes straight-

forward. Both the arch displacements and distributed loads are assumed to be

expressible as modal series expansions, and the equations of motion are then

scanned with a particular mode shape. The result is a single degree of

freedom differential equation for the associated modal amplitude (J6), the

solution of which is a Duhamel convolution integral (Equation J8).

5



Appendix K extends the above elastic arch analysis to the case of viscoelastic

behavior. When both arch and boundary restraints are governed by the same

single rate sensitivity parameter, the elastic modal analysis still applies.

Appendix L addresses the most difficult computational phase of arch modal 4!

analysis, finding the roots of the frequency equation (0). The frequency

equation is a complicated transcendental equation, usually involving both

trigonometric and hyperbolic terms. The modal frequency parameter, a, not

only appears implicitly in several places, but also controls the precise form

of the frequency equation. Considerable care is needed in calculating the

higher modal frequencies, because some of them are apt to be closely spaced. K..
-4'

3.0 CONCLUSIONS

The distinguishing feature of the closed form, dynamic arch analysis presented

in this report is its extensive use of matrix notation. The analysis includes

the effects of both shear deformation and rotary inertia on the transient

response of both an elastic and a viscoelastic circular arch, having an

arbitrary central angle and corresponding elastic or viscoelastic end

restraints. The resulting equations are presented at a level of detail suf-

ficient for direct computer programming, and a computer program (a modifica-

tion of ZEROIN) is presented for finding the modal frequencies.
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6.0 LIST OF SYMBOLS

Listed below are the symbols used in this report, and the page where each is PJ
introduced and defined. A semicolon indicates reuse of a symbol with a .*,

different definition.
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A 23 ; 47 ; 57

Al 58

A2  58

A3  58

Aj 59

A* 102

B48; 57

BI 58 ; 75

B2  58

B3  59

Bj 59
Bk 61

B 97

Bij 100

C 48

C1  35

C2  35

C3  36

C 95

(C) 97

0 4, 36

E 3, 33; 48

E 97

E 102

F 48

F 23
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F2  23
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G 38

H 40

H1  108

Hj 108

I 25

I 39

Ii 48

12 48

13 48

Ii 1X 50
K 5, 50

6rK 41
V4.K

0  53

Kj 53

K2  53

K3  53

rKI 104

L 56; 93

L 43
m 23

M 23

(N) 103

N1  103
N2  103

N 3  103

(N) 104

4N)j 104

p 57

Q 57
R 2; 57
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S 64
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Ti 109

Tj 108

(U) 43

(U 44

(U) 99

(U)j 99
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W2  63

W3 63

W4 63

W5 63

W6 63

(W) 95

Wi 96

x 5, 43

Xi 101

Xj 101

Y 43

Yi 101

yj 101

Z 43

Zi 101

Z j 101

a 51

b 2; 51

bl 2, 23

b2 2, 23

b 23

(b) 38

C 41; 54
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.7-7, .7°

Symbol PaQe

d2 '.

d* 33

e 5

f 104

f (X) 92J.

fE(x) 92

fo(x) 92 .

i 57 "-" "- "

k 31 "A,

k' 37

m 2, 23
11- 3-' '. -

m 23

(n) 43

n 52

p 43

Pj 106

r 36; 62

r 25

r2 25 'A"'

r* 28
r2* 28"""-"

s 23

tj 23

t2  23

t 3 23

U1  2, 23
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u 23 A

4u 2  28

(U) 38

,

x 29; 34
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y 56

Y 60'A

Y2 25; 60
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APPENDIX A

GOVERNING EQUATIONS FOR THE DYNAMIC RESPONSE OF A
CIRCULAR ARCH, INCLUDING BOTH SHEAR AND ROTARY INERTIA

Figure Al shows a differential element of a circular arch. For the sign

convention shown, with right-handed, orthogonal unit vectors t1 ' t 2' and t3'

4 t3 = t1 x t2 = constant [All

dt1  - [A2]
i- ti R t2 [A2ds -t1 R 2

dt2  ~
t t [A31

ds 2 R I

If we set .'."
-4'-

F F t + F t (internal force resultant) [A4]
1 1 2 2

M = Mt (internal moment resultant) [A5]
4. 3

b= b t + b2 t2  (external distributed load) [A6]

m = (external distributed moment) [A7]

u = Ult 1 + u2t2  (centroidal displacement) [A8]

= tpt 3  (cross-section rotation) [A9]

.% .4.

then the translational equation of motion for the element is

- F + F + s ds] + bds pAdsu [A1O]

where p is mass density, and A is cross-sectional area.

N 23
4.. •
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or

- + b = pAu [All]

and the rotational equation of motion for the element is

As + d-s x + mds pIdsJ [A121

where I is the moment of inertia. Then

as + x F + m = of [A13]

Substitution of Equations A2 through A9 into Equations All and A13

yields

aF I  F 2s 2 - + b =pAul [A14]

aF F
s + R + b 2 =pAu2  [A15]

+ F + m = p [A16]as 2.. "

.The next step in deriving the governing equations is to obtain expressions

for the longitudinal extensional and shear strains at any point in an ori-

ginally normal cross section. Consider a point Q in the undeformed arch

shown in Figure A2, .the position vector for which is denoted r in Figure

A3. From Figures A2 and A3 we have

r r + y2 t2 - y 3 t3  [A171

so that in Figure A3,

PP -d s t ds [A18]W as 1
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a r
2 2 ds = - ds a ds-t [A19]

Q as ds 2 1[Ao

ar2
2 B dy2 = t [A20]

where

V2 [A21]
a2 R

The centroidal displacement vector of point P in the deformed arch is

UU 1 t1 + u 2t 2  [A221 ..

and the assumption that plane cross sections normal to the centroidal axis

before deformation remain plane, and normal to the 1-2 plane during de-

formation yields an expression for the displacement vector of point Q in

the deformed arch "'

u 2 = u + q x y2 t2 = (u1 - PY2)tl + u2 t2  [A23]

If P , Q , Q1 ' and Q denote the displaced points P, Q, QIand in the

2~~ 1 1adQ2i h

deformed arch, then the position vectors of points P and Q are

r r + u [A24]

r2 =r 2 + u2  [A25]

so that in the deformed arch, Equations A25 and A19 yield

-* [l""

Q 1 = I;- a = ; ---1 d [A S]...::8"r au

,,. * 2,ds ,. 6.
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and Equations A25 and A20 yield ,...
-* ! ..

-r ar2  da 2I [A271
2-2- Y2 2 a Y28Y2

2 1 2j

The components of strain are, therefore, assuming small displacements androtations*,

Q Q Q Q

1 "1

S2
2  2a1 au2  au2  au2

as as as -1
a 2

" au 2  1 au 2  au 2  [A281

a I a s 2 as as2 2a 2

Q Q2 - Q Q2 
**

V QQ2 " QQ2

1 + 2-t •u u u
a2 Y2 Y2-1

au au au

2 1 2 2.
,.. = • 1 +2t-_. ay,.:...

t -- + au[2
A.2 ay 2 2a(y 2 ay2

The surveyor's slope correction states that when x << 1

1+ x2 -1 2-
2

I 
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Q~ Q, Q, Q-

11 24

au 2au 2 aU 2  aJu2
at * +t 2 a
2 1 a 2 is +as2

a auas 2 a 2

a~ 1*au au au2  au2
2 2* 2 2

2  1 -2 1s a2 3u

2~~ 1 + 2 2 a 2 [Ao

Assuming the displacement derivatives are small with respect to unity

permits neglect of the nonlinear terms in Equations A28, A29, and A30, -

which leaves, using Equations A21 and A23,

au4

a 1  as22

1 Iuit +(u 2 au2 t I

1 Ju- t2 a 2 2 A1

as 2as R 2 8 -1*

RR
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au2  .-321
2 2 ay 2  ( 1) = 0[32]

1---
au2  au2  _("-)'.. 2 .Y ~ -- -2=-2_+z_ .-
a t 2 a 2 + st tK (-t +  Y

"- a -Y t1 l +  U A3R3+ ]t 2 - ]':"

[ 1R

2 2 ..
Y2 R as"'-s

4.-,.-.

1 2='2 Raa

Note that y1 is positive when the dot product Q Q 1 " Q  Q  2is positive,..

2 1 2v2 ~= i s A5

which means that the angle Q Q Q2 is less than n12. When this is the .

2

case, the direction of the shear stresses on a deformed arch element are as %..-

shown in Figure A4.

If we now set --

au I  u 2  .
6 1 (C 1)Y2= 0 as R [A34] ' .

k =~ [A36] ;...
IL2

. then Equations A31, A32, and A33 can be written in the form ,.

'"~~~U (5 y3[17 u

*.. ". ',

- 'P + [A35].4r.2 12 y 0R a

3136

i - -

.as
the Eqaton A31 A32, an A3 a ewite ntefr
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C2 ~0 tA38 1

__2_ [A391

R

Assuming zero initial strain, the longitudinal normal and transverse shear

* stresses are

a 1 1 =Eel (6 1 2k [A40]

G 8
12 12 =2 A1

*where E is Young's modulus, and G is the shear modulus, so that the stress

dP resultants, F1, F 2 ' and M in Figure Al are

i.d y r2d2
F 1 )= j 11 dy2 d 3 =EO 1jj - dyv3 -EkJ2 dy3  [A421

4..F 2 = r =~ y dyyA3

N f 1 2 Y2 Y3 =G 6  r~ dY3  + 2 y A

M h the negal apeain inEquations 2, 3 an A44 can be A44

expressed in terms of a single integral. Referring to Figure A2, we write

33



F

22 I +";' 'dy 2

dY.=1= IRln = d* [A451
d - 2 R d d

Now

1 z 1+ z + z
- -z 1 zz + z z ].

so that

y 2 2-2 Y2 [L21'""

I 1 R [A461

Y2 2 2
R R R.

Thus

Y2dy2 ..2 R (d* [Ad[ ] .

R 
4'a% .

R2(d*  d) [A48] ",

d Y2 

F -

R

2 Now R2 )[4

In- + 2 + . 2 x 2 j  I [A49]
j=1 2j -1

so that if we set

d x[A501I",

then Equation A45 yields- 
'" -
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*.P r

d 0.

R

S- .Ti + !,<dY.,. x +l, -%

I d [-Jd =C d [A51]

2x

where

1- 12 4 x6

d*- = 1 + ,- ,- [A521
I d 2x 3 5 + + .... [.-

and therefore

(C1 d/R= [A53 1' *

Equation A47 can be written in the form

d = d2  [A54] Ni.
" U;.," d 2

-Y'2
2 1 AR

where fore,

d* 1 1 3  x5  r
d I x[-C2 d ix 6 10 146

3' R

and therefore,

(C2)dRO = 0 [A561

Equation A48 can be written in the form

J34

.. ,3

"'35 "-',

,d . .. -. .

- .- ° .. ,..

,.. . .... ,-... - , .. ..- .. ..; .. ; - . .. ..+ v . .-.. .. . -*.- . - •- . . + . -.. * -. ... .-. . . . . ' -, ..- . -. . .--- -.- -



d*

2 2 d 1 3d yY 2 12 3  [12

where

d [- '" 3(C. - 1) [2 4

141

and therefore,

.= I [A59]
! (C 3)d/R=O 1[A9

--* Values of C1, C2, and C3 are tabulated below to four significant figures as

a function of d/R.

d/R C C C -

1 2 3

0 1.000 0 1.000
.10 1.001 .0083 1.002
.20 1.003 .0168 1.006
.30 1.008 .0253 1.014
.40 1.014 .0342 1.025

". .50 1.022 .0433 1.039

If we define the angular differential operator, D, to be

80 [A601

4- then Equations A14, A15, and A16 can be written in the form

36
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| /'. ' w

0 F b1

1 D o F2  + b 2  pA U2  [A611
R R

t4 m
0 r r *r

where

bd3

r A, 1 2: d
A d - [A621

Equations A42, A43, and A44 can be written in the form

I1  C1  0 -C2
F2  EA 1C 0 62 [A631

2(1 + v) 2...

2r 3
2r _0 C 3] _rk

"
]"

where u is Poisson's ratio. Equations A34, A35, and A36 can be written in

the form

1R R
1 - u2 [A641 -:'

2 R R r 2 [A'4]

0 0 R '
r* R rip] .

Equations A61, A63, and A64 are the governing equations for the dynamic

response of a circular arch, including both shear and rotary inertia, with

one exception. That exception is replacement of the constant C 1 in the IPA
second of Equations A63 by the transverse shear coefficient, k', to account

for the fact that the arch cross section does not remain plane (Ref. 15).

Ref. 15. Oden, J. T. and E. A. Ripperger, Mechanics of Elastic Structures,
2nd Edition, McGraw-Hill, (1981).

37
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APPENDIX B

%" MATRIX FORM OF THE GOVERNING EQUATIONS

Equations A61, A63, and A64 can be written in matrix form by setting l_

0 -1 0

G 1 0 0 [B1]

O--"0r

C 0 -C r- - -I
1 2r

"-' k' -
S= 0 2(2 +  0 2

d
-C- 0 C
-2r 3

*F

IF F2  [83]

2r! -

IM
r

""6 6F [B4] '"'

N2
-, 1 } = 82 [841.--. .

rk;

~u]

(ul = u2 [B]

. "'b

(b) = b2  [86]

2

r -

38S, 38
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The equations of motion (A61) then take the form

1 %

R (0! + )F (b) = pAIU) [B7]

where I is the identity matrix,

the stress resultant-strain equations (A63) take the form

{Fj = EAS (6) [B81

and the strain-displacement equations (A64) take the form

(6 (DI - GT [j)B91

Substitution of Equations B8 and B9 into Equation B7 yields ~-

(DI + G)S(DI G )(ul (bi pA ul [B1o]

or

EA T
-(DS + GS)(DI -G ){uj (bI pA (ul

or

E D2S DS- - T + OGS GS T 1 (uj (b1  pA 1 i
R

or%

EA[s D(g.S - GT - GsGrlu (bj pA {uj [B1l]

The matrices in Equation B11 are computed below.*..

6 . -4



-%

C! C~2 r "

k'

2(l + p :
.P ,.

C 0 C-

-1 0 0 2(1 + 0 (B12]
dd%"

1 0 0 C 0 C rBi

1 2 r
R ___ _R ,..- .

0 r 0 0 2r(1 + .) 0 e

0 C1  0 .-

TGT T k' 0 k'R 3SO- =SGT 2(1 +U) 2r(1 + V) [813] ,

d0 -C - 0
2 r

0 ' "(0'"2(l + v

Tk' + k'R c d
G.*-S T = 2(1 + u) 1 2r(1 + v) 2r (14]

k'R d i," %.
0 2r(1 '+ v) +C 2  r,0

Note that the matrix H is antisymmetric.

A..
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o" U

0 CI  0 . .

SG2(1 + *I+v

o -C 20

ok' k' R B5]
2(1 + v) 2r(1 + v) ".15J

1 0 0 0 C 10

0 o - 0 k'R2

r 2r( + ) 2r2(1 + V)

G GSGT K

If we set .

2 [66c2 = - .[B161 ) (

P

then Equation 811 can be written in the form

uV 2
- (S + DH - K u ( i (B171

Equation B17 is the governing equation for the dynamic response of a

circular arch, including both shear and rotary inertia, written in matrix -

form. The matrices S and K are symmetric, and the matrix H is antisym- -.

metric, i.e.,

_ =_ [818]

KT K 18191

HT -H [B20]

Note also that Equation A62 yields I

= 3 [8321]

41
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so that we can write ..

d
C2 r = 2r C [B221

4 .42

'-- r

J. "A

4' 4..

'.% .v,

.4 .. % ,

'..'

2 . -. -
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APPENDIX C -

UNCOUPLING THE EQUATIONS OF MOTION .;

'For free vibration, we set 
s'.

{b) = {0) [Ci]
S *55 % %

in Equation B17, and obtain

2 (D S " K).u) .) [C21

Assuming a separable solution, we set

{u}= T{U) (C3]

where T is a function of time only, and

{u} Y [C4]

1.

where X, Y, and Z are functions of 0 only.

Substitution of Equation C3 into Equation C2 yields

. (12 2TUI - T(Ds + oH - K)U? -- LC5j- - --- 4"

or ..

JR - Lmu I C6
.4.

where L is the linear, spatial, matrix differential operator,

2
LaOS +OH - K [C7]

. . . . I"",a.I

It is convenient to define a diagonal matrix containing the elements X, Y,

and Z,

.- ..,
-- l

..- •%



L

x o 0-
r ] = y [c8] . "

[U1=0 Y 0 [8
0 z

(The notation [ J denotes a diagonal matrix.) ',

as well as the identity vector 4

ml= [C9-

so that

U l Im} [cIO]

and
r.I

m = u [Cil]

Premultiplication of Equation C6 by -1 yields

Tm} - T U- Lu} ( {01 [C12]

and division by T yields

T~mT 1RI2r- -1 :'."u,
IM) LIU) [c131

4-..

Since the LHS of Equation C13 is a function of time only, and the RHS is

a function of 6 only, for arbitrary values of T and 6, both sides must be

constant, so that

Tim U LIU: lm} [C14i]

k

44

S ' .



-A-. -- -. ' '

and therefore - '"
p. %*%d

Tp 2T= 0 [C151

The function T is therefore harmonic. Premultiplication of the last two

parts of Equation C14 by 1Uj now yields

- -/-'..-

2.2 - ..*, -

or ....

22
LIU) " " [C16

[R
where

Equation C16 can be written in the form

(L. +2 ) = r0}Ice] '-l
a2!D(U) (018

2i•
The linear differential operator coefficient matrix (L + a2I) in Equation

C18 is coupled, but the system of ordinary differential equations can be

uncoupled by premultiplying by the adjoint of the coefficient matrix.

(L + a 1)*(L. + a I)JU) = &!Uj A(U} 10} [C191 :"
Al '.~ A.I. ".'.! . ,

where A is the determinant of the coefficient matrix in Equation C18.

I

4 ". - "

45
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Equation C19 shows that X, Y, and Z each satisifies the same linear,

ordinary differential equation:

AX 0 [C211

AY 0[O2

AZ= 0 C231 -

The system of equations is thus uncoupled.

4.
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APPENDIX D

EXPANSION OF THE CHARACTERISTIC DETERMINANT .~

In Equations C21, C22, and C23, the linear, ordinary, differential

operator A represents the expansion of a determinant.

2
A L + a I [C20 bis]

* where

L D oS + OH-K (C7 bis]

and

C0 -2Y3C
CI - 2

-- S = 0 2(0i) [oil

-26iC 0 C
2 3

2(1 + )

___ k'R
H= 2(1 + v) '* 1 0 2r(1 +) 2V3C 2  1021

0O( + 2) / 2C2

2(1 + u)0 -2r(1 + v

K = 0 C1  0 LB15 bis]

-'k'R 0 o
- I ~r +2r 2 (I + v)1U

*To facilitate the expansion of A, let

C, A [031 % e.

d 47



W_; - 4... P -- -

-B [041
-. 2(1 + v P

C 3= C [051

26/C E D62 L

RF [071
r

Then Equations C7, D1, D2, and B15 yield

[A 0 -E 0 -(A+B) 0 1
2
D 0A (BF+E + D B) 0 -(BFi.E)

-E 0 C0 (FE

fB 0 -BF

F2}

2_ 2AD -B -(A+B)D -ED +BF

= (A+B)D So02 -(BF.E)0 [08]

-D BF (BF+E)0 CD-BF2

so that Equation C20 takes the form

2_ 2 2(AD -B)+(T -(A+B)D -ED +BF

2 2 2

-ED+BF (BF+E)D (CD2 BF2 )+

*Equation 09 is very similar to the determinant which arises in calculating

principal stresses, so that the expansion of Equation D9 is known to take 4

the form

A 6 +I
4 

+I
2  i[0]

1 2 3

48
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where

, ---.I =Tr (L) [oil]

2- 2_
AD -B (A46) D 80 -A -(BF+E)0 *

2 (A+B)D B 2 -A (BF+E)D CD2 BF2

CD 2-BF2  -ED2+BF "
+'[12' 1.

2 2 A 4
-ED +BF AD -B

AD 2-B -(A+B) -ED 2+BF -,

I (A+B) D BD2-A -(BF+E)0 [0131

2 2_ 2
-ED +BF (BF+E)D CD2-BF

Equations Dll, D12, and D13 yield

I = (A + 8 + C2 )D - (A + B + BF2) [0141

4

12 (AB + BC + AC - E2)D4  -

2 22 2
+ (2AB - AC + 4BEF + - BC - ABF ) (AB + ABF2 ) [D15] v'.

.
,
- 13 = (ABC - BE2 )(D2 + 1)202 [016].- :. .. '.

Substitution of Equations D14, D15, and D16 into Equation D10 yields

C)02  26 AF'I
= a + [(A + B + - (A + B + BF . ,

+ (AB + BC + AC - E2 )D4 + (2AB - AC + 4BEF + E2 - BC - ABF2 )D2

+ (AB + ABF
2  .2

2 26B 2D4 +221
[ (ABC - BE )D6 + 2(ABC - BE)0 + (ABC - BE2)D [D17]

Finally, A can be expressed as a polynomial in the operator D.

.°, 49 .,:- ; ::,"__
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A =(ABC -BE )D6 + *(B BC + AC E 2)a2 + 2(ABC BE2J-

+ (ACB+Ca 2B- C+4E BC -(AB 20

Al theC [ E)+['(A + B C+JOF (AB + A C BF21 _D18

Altecoefficients in Equation 018 can be expressed in terms of the

*invariants ofthe marie S, H, KadS KheeI ih

* invariant of the matrix, x.

I(S) =A. B + C [D19]

I2 (S) =AB + BC +AC -E
2  [0201

I (S) = ABC -BE
2  [0211

~I~ (H) = 0[D221

I (H) = A2 .+ 2AB + B 2  B B2 F2  2E E E2  [0231

1 3 (H) = 0 [0241

I (K) A A+ B+ BF2  [025]

1 2 (K) = AB + ABF2  [D26]

I3 (K) = 0 [027]

~A-B 0 BF [28

S-K= 0 B-A 0-[D28j

BF-E 0 CO

1 12 (SK -A2  2ASB52  BF 2 + 2BEF -E 2  [029]

1 2 1 - - ) - 12 (K) + I 2(t) -

=2AB-AC +4BEF+E 2 -BC-ABF 2  [D301

5(T
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Thus, Equation 018 can be written in the form

4 2

+ 11  [ 121S- - I2 (S) - 121K) + 12 H) ]
2  + 1(S)]D2

1[6 2 2_

[a Il(K)a4  2 Ko [031]

Substitution of Equations D3 - D7 into Equations 019, 020, D21, D25, 026,

and 030 yields

1 3 (+) = [[0332 + [03

12 (S) - 2(1 + v) [ - 2C [033] -.

13k 2S1 [ 12C2 [034]
31 .k'%

I ( 1 + 2(1 + -I 2C [ 0 3 5 ]

_______ F [R 21

12 ) = 21+ V)1 +1)I + [036

2 (SK)- 2 (S) -1 2(K) + 12 (H)

2(1 + u) F2C - C3 + 2 -r C

r21
- 1C- 12C 2  [D37)

Therefore, if we set

f 2lS) 2 +2'[038]

- - 13s , _ o + [1( +1()a [039] -"-
2 (S) 2 + I(D38

4. 3

I3 S [ 3 ]::S.> .

.- ;.

1" 2 2 2
•~ + -" 1 ." %. [039 ,% % % -. " .1 .. ° .- .% % . ." .% -. " ." % % ." .'w" ." .".% % " %

• '. " "." "-" " ," -"- ,, ' " '."."a w " " '.".". "." - • - ,"- , . .. .,'." "N - -3



C 6 - + I2(K)o'2 [0401

S3 (S)

then Equation D31 can be written in the form

A = I3(S) (06 + aD4  bO2 + c) [0411

Lnspection of Equations A52, A55, and A58 shows that I3 (S) as defined by

Equation 034, is always positive.

Referring to Equations D32-D37, we see that

12 (1) C1  C3  2(1 + ) D421

-"~~ k3' k

3 ( C C - 12C"
1 3  2

-" 5  2(1 + , C1  3  1

+ [o0543']

§I(S) 2 (K) + 1C3  1

3-- 2 (1 c+ v 12'..043]

*2 - - o - *-.'.H
C -C3  + 12C

___ 2(1 + v) f 1  2 05

1 3 ' CC-1C2 r D5

13(1 k' V 3  12 21  1 3  - 2

14 j 2 [ 1
CC[r 122 [046)

1 3 2 V
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Nj
j

and if we set

1 K[0471

C C - 12C 2  0
1 3 2

C I

C2  .. ;.,:K= K [049]

C3  -2 = K [050]

K 3 001

2(l + v) nO l "0"11k' = .';

z [052]

then Equations D38-040 can be written in the form

a = (K1  K3  n~a + 2 [D53]
1 3

[ n(K1I + K 3) K 0 ]a4 +e [K 1(2 z 2 + 8V3K 2 z - [0 j 2 1 (54]

C = nKo a6 - (nK1 + KO(I + Z2)]aQ4 + K (I + Z2 )a2 [0551

•. .. -

The coefficients Ko, K1, K2, and K3 are functions of d/R.

d/R C1  C2  C3  K0  K1  K2  K3

0 1.000 0 1.000 1.000 1.000 0 1.000 "L
.10 1.001 .0083 1.002 0.998 0.999 0.0083 1.000
.20 1.003 .0168 1.006 0.994 0.997 0.0167 1.000
.30 1.008 .0253 1.014 0.986 0.994 0.0249 1.000
.40 1.014 .0342 1.025 0.975 0.989 0.0334 1.000
.50 1.022 .0433 1.039 0.962 0.983 0.0417 1.000 "a,

53 ,.._ e,

___ .'..:



.0%

Using the commonly accepted value :

X~2 *. -%
k- = 2 [056]

Equation 051 yields

12(1 + .) [ ].-
n 5 [057]

45

V n ::

0.10 2.64
0.15 2.76
0.20 2.88
0.25 3.00
0.30 3.12
0.35 3.24

Assuming, based on the values tabulated on the previous page, that
4''

4 K~0  1 = 3  1

K2 =0

Equations 053, 054, and 055 reduce to

a = (2 + n)a + 2 [D0581

4 2 2
b = (2n + 1)o (z + n - 1)a + 1 [0591

c = Ina - (z2 + n + 1)2 + (1 + z2) a2 [0601

and if we assume that

n 3.'.

z2 + n 1=z 2  :

Equations 058-D60 reduce to --

a 5a + 2 [0)6"11 .

54
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4 2 2b: - 7a4 _ ,, a + [D62),;;' ,

c = 3a4 - z22 + z2  [0631

Equations D53-D55 and D58-D63 show the relation between structural parame-

ters and frequency, and the coefficients of the characteristic equation,

D41, under various assumed (approximate) conditions.
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APPENDIX E

GENERAL SOLUTION OF THE CHARACTERISTIC DIFFERENTIAL EQUATION

The constant 13 (q) in Equation 041 is nonzero, and can therefore be

ignored. We therefore seek the general solution of the homogeneous,

linear, ordinary differential equation 0v

LX = 0 [EI.

where

L. L 06 + aD 4  b0 2  c [E2]

D [3

dOI'The solution of Equation El is assumed to be of the form

X = Ke X0  [E4]K and substitution of Equation E4 into Equation El yields

(X\ + aX4 + bA2 + c)KeX = 0 [E5]

If a nontrivial solution exists, it must be that

6 '4 2
A + aX + bX + c = 0 [E61

Equation E6 is a cubic equation in X2, and therefore has three roots:

2 2 2X1  X11 it Ind

Equation E6 can therefore be written in the form

[A2 -k 2~1 X2 A 21 l[,k2 -k21 1 j A 6 .ak 4 
+ k b 2 + c =0 [E7]

Comparison of Equations E6 and E7 shows that

a=-[A2 + X21 + >'21 1 ] E8

b X X ( E9] .

* c=- 2 A2 A2 [E)

'V. 56



The classic algebraic solution of a cubic equation (E6) begins by setting

p2  a EE-IX =. - [Ell] ,

,6 in order to obtain the reduced cubic equation

3 
e%

y - - Q =0 CE12]p

where
2

P a b (E131
3

Q ab 2a3

3 27 -E141

The solution of Equation E12 is obtained by assuming it to be of the, form

y A + B [EI5]

which leads to the requirement that

AB = [E16]

and

A3 + B Q [E17]

Equations E16 and E17 generate a quadratic equation, the roots of which

are

3 [,j2 IE],A + [El8] .

2 [2 [!3

33

and if we set

[, 2 [P 3" 

-

R = - [E20)
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then Equations E18 and E19 can be written in the form

AE +r E21] p

B 2 (E22]

The nature of the roots A3 and B3 is determined by the relative values of

P and Q.

[!3 [If [E231

then the quantity R defined by Equation E20 is nonnegative, so that R
3 3
A , and B are real. Then if we set

A = +[E24]

IP R]113

B. = 2 ( E25]

and then, using nt as the constant, 3.14159 .... set

A =A [E26]

-21

A 2=Ae'3 (E27]

227

A 5 Ae ( E28]3

B =B [E29)

.27T
B =Be'3 [E301 .2
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.21r
B 3 Be- 13 [E31)

then Equations E16 and E17 will be satisfied by setting

y.=A.i+B. (j 1, 2, 3) (E32]

If, on the other hand,

3 2 [E33)

then the quantity R defined by Equation E20 is negative, so that rRis

imaginary and A and B are complex. Then if we set

A = +1 i i [E34]2ti

B [~~ E35]2

3 *3
then we can show the complex quantities A and B in an Argand diagram

(Figure E). Nate that Equation E33 guarantees that P is positive.

* Figure E yields

3 rP 3  w3
A = ~ e [E36]

3 [P1'2-j3wB = ~ e [E37] I
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AP

-
3 w

-Re

Q

3W = V31 
.

.'-

B3

Figure E. Argand Diagram Showing A3 andB
When R < 0.
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where

cos 3w 2 (0 < 3w < ir) [E38][I3/2

If we set

W W = [E39]

2( [E40](2 =  3 .""',

W 3 + [E41]

and then set

A. = e] (j = 1, 2, 3) [E42]j
1/2 i""k

B [) (j 1. 2, 3) [E43]

then Equations E16 and E17 will be satisfied by setting i

yj = A. B 2 - cos w. (j =1, 2, 3) [E44] ...1 4 j 3. .4..:.:.

Finally, in keeping with Equation Ell, we write

-... .'-..x2a

[I= y2 [E4Sb] """:

11 2 34.

- a [E45c]
III "'3 3

2 2 2
We now need to determine whether the roots X A V and X are real or

complex, and if real, whether they are positive or negative.
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APPENDIX F

CHARACTERISTIC MODE FUNCTIONS

The exact nature of the three roots, AI2 , A11
2, and AIi 2, defined by -

Equations E45, determines the forms of the arch mode shapes. The three

roots are determined by the coefficients a, b, and c, which appear in

Equation E2 and are defined by Equations D38-040, 053-055, 058-D60, or

D61-D63.

First, note that Equation D53 guarantees the coefficient "a" will always

be positive.

a > 0 [F1]

Now consider Equation E12:

y3  _ py .Q = 0 [E12 bisl

The various root combinations for Equation E12, and the arch mode shapes

associated with each are discussed in detail below.

Case 1: P Q 0

In Case 1, Equation E12 reduces to

y3  (F2] r

and the roots are

Y= Y2 = Y3 = 0 [F3]

Therefore Equations E45 yield

x2 - 2  x2  a- [X I I I X III 3 [F4]

so that

A11 =X 2 1 = 31 =i [F5]
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[F63

12 22 32 =  3

If we set

Ax AX [X= ='F7]
1 2 3 v

then because of the repeated nature of the roots, the mode functions are

W 1 = cos AO [F8]

W2= sin XO ( F9]

W3 = 0 Cos XO [Fi]

W 4 = 0 sin AO [F11]

W5 = 0 2 cos AO (F12]

W 6 = 2 sin X9 [F13]

Case 2: P = 0; Q > 0

In Case 2, Equation E12 reduces to b

y- (FI 4= [ 1.

so .that

y= I Q(I F15.

Now let '

r Q 11/3>0 [F16]

Then

Y r (F17]

3 r
Y= re = -(-1 + ir3) [F18]
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=3re 2- (1 + iV's) [F19]

% %J

* and Equations E45 yield

x2 a [F20]
1 3 __

x + a] in___ Sei( (F21]

x = + ~- - Se" [F22]

* where

2 3r ~ 2 ra 2
=12 3 42 3 (F23]

r al
*=cos[ 3 +EF24]

a

% Case 2a: r -3 0

*For Case 2a, we set

ri 3[F25]4* .1

A1 2  r _a (F26]

rs2 =~e i s 1 ! + i siE F27]
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A22 Sei 2= -1[cos2 + i sin2J [F28]22 2, 2:

A SOe os - i sin (F29]
3122

A32  e C-i -cos + i s (F30]

and then set

A = a [F31]

x = V cosO (F32]
2 2

x Cs sino (F33]

so that the mode functions are

W1 = cosh A10 [F34-

W 2 = sinh XA1  [F35]

W 3 = cosh A20 cos A3 0 [F36]

W 4 = cosh X20 sin X3 0 [F37]

W5 = sinh X 20 cos A30 [F38]

W6 = sinh A29 sin A38 [F39]

65-
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a
Case 2b: r-3 <0

For Case 2b, we set

11 /3 a(F40]

x a 
F41]

12 3

x =vSt Cos 2+ i sn [F27 bis] A '

x -Vfcos + i i F8 i]e

221 2 si2! 
(F28 bis]

x rVSjcos + i sinj t]fF29 bis] r

A3 2  2 2 
F0bs

d and then set

3 -

(F42]

'k c' cos lo 
F32 b is )

A 3 v's sin2 
fF33 bis]
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so that the mode functions are

WI = Cos X19 (F43]

W2 = sin Xje [F44]

W3"= cosh A20 cos A38 [F36 bis]

W4 = cosh X20 sin X3e IF37 bis]

W5  sinh X20 cos X3e fF38 bis]

W6 = sinh X20 sin A30 fF39 bis] .

.

Case 3: P = 0; Q <0 
'p

In Case 3, Equation E12 reduces to

Y+ Q =0 fF451

so that

y3 I Q(I F46]

Now let

r 1 /3 > 0 fF16 bis]

Then

Y= -r fF47)

3 r

Y= re -- 1 + iF481

'IT -1 ~' '- A,

y 3 =re = 1 - i3 [F49]

and Equations E45 yield -

; - r [F50]
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A 2  i 26 Se f F51]

1 r a13 n2

X 2 --- iLC-=Se-" (F52]
111 12 3j 2

where

4S2 ] + - r~ - -+ [ F53)

o o -[ 31 CF54]
= II %..

We now set

A =i /r + fF55]
11 3

A a/ [F56]A12 r+ 3

A Cs'e' = o + i sin-0 [F27 bis] ~21 2 sjo 2  2]

CV'e' = os i jn fF28 bis]22 1 2[os 21

A 1  V'Se 1i2 CS V[cos i sin-t fF29 bis]
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*4

A32 = -Vrse - 2 = [cos0 + i sint (F30 bis]32-2 22

and then set

a. [F57]
Ul = r [ST

~% .4" o,.

/r' 3,

A2 = ycOsl2  (F32 bis]

x3= v'S sin2  (F33 bis]
3 2

so that the mode functions are

W1 = Cos A(P [F43 bis] .. .2

W2 = sin N1  [F44 bis]
~. .%.'

W 3 = cosh X20 cos X3 0 [F36 bis]

W 4 = cosh A28 sin X30 (F37 bis]

W5 =.sinh X20 cos X30 [F38 bis]

W6 = sinh X20 sin X30 [F39 bis]

Case 4: P > 0;-Q 0 -

In Case 4, Equation E12 reduces to .;..

3- II = lply - pIl] = 0 [F58]

Now let

, r =VlTPI [F591 '..%

Then lee,

Y 0 (F60] . '-

Y = r 
[F61]

3= -r [F62]
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and Equations E45 yield

A2  a - [F63]

2 a [F641II 3

2 [F6alj1 1 -r + a]65

Case 4a: r -3 0

For Case 4a, we set

a i/F[66] %%
i/I 

. - .'.-

/,a - (F67]

12

A = r a [F68]
21 3

2p 2 *,V. -3a

a
31 3

x A32  r / + 3  (F71]
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and then set

(F72)
1 V3

/r a r 3 F73]
23

A r [F741

so that the mode functions are

WI = Cos XIe [F43 bis]

*W 2 = sin X10 [F44 bis]

W3= cosh A20 [F75]

W4= sinh A29 [F76]

W5= Cos A39 (F77]

W6 sin X36 (F78]

*Case 4b: r3<O0

For Case 4b, we set

A = [F66 bis]

A 2  /' [F67 bis]

A i r [F79]
21 3
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A ~ !r [F80] '
22 3

~i a [70 bis]
31 r 3

A ar [ F71 bis]32 ir 3

and then set

A1 = [F72 bis]

A a [F81]

A3  + [F74 bis]

.so that the mode functions are

U1 = Cos Ale [F43 bis]

W2 = sin A19 [F44 bis]

W3 = cos A2e F2

W4 = sin A20 [F83]

W 5 -COS A3 0 [P77 bis] N

W6 -sin X3 0 [F78 bis]

Case 5: P ( 0; Q = 0

In Case 5, Equation E12 reduces to

3 + ly =yjy
2 + Ii'I] =0 [F84]
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p~ 4  Now let

r Y7T7I (F59 bis)

Then

Y,- = F60 bis]

Y2 = [r F85]

Y3= -ir (F86]

.4and Equations E45 yield

A 2  _a [F63 bis]
1 3

.4 2 _ a + (p= e
4%XI 3 + r S F87]

X2 =~-ir =Sel [F88]rit 3

where

2 a2 2
S =- +r [F89] ~.*

.4 yCos [F90]

* We now set

A1 1  /! CF66 bis]

=-i (F67 bis]

-4S A21 rV'e [CS 2 i sif F27 bis]
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A 22 - = -/S[Cos 2 + i sin 2 (F28 bis]

31 = e = V'[cs - i sintl [F29 bis]
31 2 2j -

i2 r d t)A3 2' -rSe -  -cos + i sin 2 (F30 bis]

and then set

3 CF72 bis]

2=V C2 (F32 bisil
2 2

A2= V SI [F32 bis] --
3 2 [F33 bis]

,. -.. -.

so that the mode functions are '-.4.

W1 = cos 1  (F43 bis]

W2 = sin Ale [F44 bis] .,

W3 = cosh X20 cOs A30 [F36 bis]

W4 = cosh A20 sin X3e .F37 bis]

W5 = sinh A20 cos A30 [F38 bis]

W6 = sinh A20 sin X30 [F39 bis]

Case 6: P < 0; Q # 0

In Case 6,
..

< 0 [F91] '.

so that Equation E20 yields
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VR I~jI [13 >IgfF92]

and therefore Equations E21 and E22 yield

A3 + > 0 [F93]
2

3
B rR < 0 tF94]

2

Now let

A- + V R (F95](2

and then set

A =A CF97]

3 A
A =Ae (-I + i') [F98]

2 2

21r
A Ae 3(A iV's' [F99]

3 =-2(

B1 -B [F100]

B Be -(1 + iri) [F101]2 2

B Be B( ir) F102]
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Then Equation E32 yields ,

Y = A B =A -B [F103]

1[ 1

=A 2 +2 = 1[(-A + B) + iV'(A+B) [F104]Y2 2 2 2

= A3 + B3 = [(-A + ) - iV3(A + 8)1

so that Equations E45 yield

A (A -B) F106]

11 = [~+B-J B) e[F107]1.o, .
1'.3

2  [-A+ B " C"31
AII 2 3 i2(A + B) Se [. ,

2 [-A. 8 a] -3-
X - _i ( A* B)= Se -i  [F108] '-
1II 2 3 2

where

2 A2  2AB + B2 (-A + B)a a2 3 22
S 4 - 3 + 9 4 (A + 2AB B) 4

2(A - B)a

(A + AS + B) + FI09]
3 9~f19

Io - A -B a

__- 2 3 (F110]

a

ss

Case 6a: (A - B) - 3 ) 0 , *'

For Case 6a, we set "..

ll= (A - B) - f Fl11] .. ,"
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Id 
.0

I' 
fp..J'p..

-/( a [FI12"

A12  3A-B)-3

2 =I/e i  
=/S cos + i sin [F27 bis]

21 j22

_e i  -S Cos, + i Sin [F28 bis) %

22 -v[o 2  si 2

A ''4
i2 f .1-

A Ve = -cos - i sin [F29 bis]

-3 2 
-

A 3 C e2.

and then set

S= (A 
(F113)

X3=V csn 
[F32 bis]

[F33 bis] '-a

3 2 -

so that the mode functions are

W, = cosh X19 
(F34 bis]

W2 = sinh XO 
F35 bis)

W3 = cosh X20 cos X30 
CF36 bis]

W4 = cosh X20 sin X30 
(F37 bis] .4.

W 5 = sinh X20 cos X.30 [F38 bis]

W6 = sinh A20 sin A30 
(F39 bis]

. ~~77 - '-
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a I " -"

Case 6b: (A -B) - < 0

For Case 6b, we set

=j -(A -B) (F114111 /3

X2 1 = S cos + i sin] (F27 bis]

A2 2  -Y cost +i sint] [F28 bis]

A31 :rs COS 2 i sin (F29 bis]

x32 : [-cos + i sin [F30 bis]

%- and then set

a -
X, A (A -B) [F116]

A~~ j cos

2 = [r 5 OF32 bis) "

3  2 (sin [F33 bis]

so that the mode functions are

WI = COS X16 [F43 bis]

W2 = sin 1e fF44 bis]

W3 = cosh A20 cOs X30 fF36 bis]

W4 = cosh X20 sin k30 [F37 bis)

, 78 8
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U5 = sinh X20 COS X30 [F38 bis]

W6 = sinh X20 sin X30 [F39 bis]

2/3*

Case 7: 0 < P 4 Q -

* In Case 7,.4

3 2

so that Equation E20 yields

0 3 R(18

2 $r

[ 2 + VRj >f F11]

31/3 > 0
B = CF122]

Ae -(- VR ivF 2b11

2 2 (F122]4

and then se
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3 A~

.2w .. 2

A Ae - A(1 + i(P) [F99 bis]
3 2

B2 =Be -  [123

.27r
1 3 B (14Be = -(-1 + i3) [F1241

27

B Be - (I + irY) [F125]3 2

Then Equation E32 yieldsT~eo 4uo. oo
Y =A 1 + B =A+B [F126]

=A + B (1 +iV ) [F127]
Y2 2 2 = 2 (1+i3

Y3 = 3 + B= - (1 + ili) [F128]

so that Equations E45 yield -

2 =2(A + B) a [F129]

Al = ( a- )(A ) Se i  F130]

1. 4.

r.172II = + B)- B) = 3

where ,ll

s= (A +)2 (A + )a( 3 B)
4 3 + 4+

2 (A + B)a a2  I
(A4+B)4+ 3 -[F132]
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Cos___ (F1331

d a
Case 7a: (A + B) -3 )0

For Case 7a, we set

A IAD' + -B a(15 ~~
12 3 [F135

A =V'§e' i2 I/cos! + i si,]F27 bisl
21 12 2i~

i2s~ ~
A -re - cos2 +ji sin~p] (F28 bisl

2222

A =se Cs 2 - i sin!P (F29 bis]
31 1 22

A2 =-'e- 2  2. i iC F30 bis]

and then set

1 /(A B)- _(P[1361

A 2 r' cost (V32 bis]
2 2

-4 ~A rs Vsin4(33bs
3 2 F3bs



so that the mode functions are

W, = cosh A19 CF34 bis]

W2= sinh X16 fF35 bis)

W3= cash X20 cos X30 fF36 bis]

W4= cosh A20 sin A30 (F37 bis]

W5= sinh X26 cos X30 [F38 bis]

W= sinh X20 sin X30 CF3 bis

Case 7b: (A + 8) -3 < 0

For Case 7b, we set

.1A . ~ (A + B) [F137]
J11 i 3

A1 2 - i -(A +B) (F138]

A r Cost + i fit F28 bis]

x qosl - 1in fF29 bis] .

31 sin2

xA32 = [cost + 1 sinl~ fF30 bis]

and then set

A = - (A B) [F139]1 3

A r= Vcost ( F32 bis]2 2_
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3 2CSsint EF33 bis) \

so that the mode functions are '-' -.,. .%.

Wl = cos Ale [F43 bis]

W 2 = sin A19 [F44 bis]

W 3 = cosh A 2e cos A 36 (F36 bis)

4= cosh x 2e sin A3 0 [F37 bis]

W5 = sinh X20 cos X3 e (F38 bis]

W 6 = sinh X 20 sin X3 9 (F39 bis]

Case 8: 0 < P 1 [ 2 ; Q < 0

In Case 8,

0 [j3 [g] (F117 bis]

so that Equation E20 yields "

* t... r n ~ r. ..i n

=,0 ( - < Fl18 b s] *.'. -'

and therefore Equations E21 and E22 yield

2A= + <0 [F140]

a = -Y < 0 (F141]

Now let " --

A = *[ F142J ] - F,

= 
[F143]

* ~83 ,

--- --

4, .,=t, ,:. , . >, ','.,. -,,,.,'_ 'L'z > ? =? ' 
.
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and then set --

A 1 = -A [F144] "."

1-

A A= Ae 3 A(I +iV') [P145]

A3 = Ae = (1- i/3) [F146]

B -B [F147]

B =Be+3  B (F148]
2 2( i~

B B B (1 i3) (F149]3 2 -

Then Equation E32 yields

y = A1 + B= -(A +B) [F150]

Y2 A 2 + B2 2 ( 1 + iVr) [F151)

Y3  A3+ 3 2
2 (1 -il/3)[F152]

so that Equations E45 yield

.% N

2 (A+ + 4
1 1 = - 3 B(A + ) [F154]

2 A B -a -( 8 e~f14

A i (A + B) = Sei [F155]
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where

2 (A + B) 2 -(A e+ B)a a a2  3 2

S(A B)2  (A Ba + F)643 - 4

(A +B + a1 F16

0=Cos 1  2 3[F157]
I S

* We then set

a i/A B F58]

A =-1 (A +B) +-12 3 tl~

C2 1 =CSe' s + i sin-t [F27 bis]

22 rs i 2 1 os2S + i [i~t F28 bis]

A3 =Vse r= Y[cos i sintj (F29 bis]

31 1 2e 2

32 i2 c04 2  i sinfl, [F30 bis]

* and then set

A (A B) 3 F160]

A = I/cos~[F32 bis]2 2
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A sin2  CF33 bis]

so that the mode functions are

W = Cos X le [F43 bis] -

W 2 = sin A10 (F44 bis]

3 cosh X20 caS X30 (F36 bis]

W 4 = cosh A20 sin X30 (F37 bis]
W5= sinh x2 e cos A3  F38 bis]

W 6 = sinh X26 sin A3e (F39 bis]

a2/3

Case 9: P > [21. Q 0

In Case 9,

4..> 
[gj Q2

[F161]

so that Equation E20 yields

R 2 - < 0 [F162]

4J

We therefore define

W~ -1 12

S= -cos P32 (0 4 w 4 ) (F163]

and then set

[E39 bis]

21r
2 3 [E40 bis]

,.1.
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U-3-777>75.777. *4V:7.p7

*3 3W =W+ 2r[E41 bis]

and, following Equation E44, set

Y=2ACos W F164]

Y3 2T3cos wE F166]

The following diagram shows that, since

0 4W4[F1671

- then-

4.3
y Y

.4. 1

87~4



We then set

x2 a
XI = i' 3 (F169] • °. .--*

2 a
S=2 -3 [F170]

2 a [,..1)

XIII Y3  3 F11

These cases are possible, as shown below.

A 2 ,...:. _.

0 <0
2  9a
II < 0 9b 9c

O2 2 ) 0"':''Case 9a: 
;I 0-

I I I. 
.:

In Case 9a, we set

_ Y a 
,,--.,

a

A12  - 3 [F173]

_a

2 1 = -2 3 (FP 7,] ..-.,

A22 = [F175]

I: .

31= V-3 Y3 [F176]

A3 2 =- Y3 F177] 2.,

I:-. -:



and then set

y [' F178]

1V 3 t19

aY -
3 V 2 3 [F179]

IZ

W1= cash NJ@ (F34 bis]

W2= sinh X1 F35 bisl

3 2 csh (~ F75 bis]

W4= sinh X26 [F76 bis]

W5= COS X39 (F77 bis]

W = sin N38 [F78 bis]

Cas 9 A 0; x2  < 0

Cae9: I II

In Case 9b, we set

12a1 [F173 bis)

A2  i a~ - F181]

A 2 2  ~ 3 ~ 2 [F182]

31 a' (F176 bis] .I

31 A3 Y3
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-6_0.

Xa [F177 bis]

32 Y 3 Y3

and then set

xa CF178 bis)

4 ..--. '

a (F1831

A- ~ (F180 bisl

3" 3 3

so that the mode functions are

W 1 = cosh X1 9 
[F34 bis]

W 2 = sinh Xle 
[F35 bis]

W3= cos A28 [F82 bis]

W4 = sin A28 
(F83 bis]

WS = cos A36 
[F77 bis]

W 6 = sin X30 (F78 bis] ..- '

2A < 0
Case 9c: I

In Case 9c, we set 
,

Ay 
[F-1841

v1 3 1

A =-i 
(F185]

12 3 1 W--'

A i a [F181 bisl

21 = A 2 
%a e

A ./-i F182 bis]
22 32
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=  a _[F176 bis]
31 3 Y3 '

32 - Y3 [F177 bis]

and then set

A 1= 3-l [F186)

'2 -Y2 [F183 bis]

2A a 2

x3 3 VF180 bis]

3 Y3

so that the mode functions are

WI = cos 1
e  (F43 bis]

W2 = sin Ale [F44 bis] .

W3 = cos X2e (F82 bis]

W4 = sin X2  [F83 bis..

WS = cos X30 [F77 bis]

W6 = sin A30 [F78 bis]

Cases 1-9 (Summary)

For convenience, the above cases are summarized below.

Case Criteria

SP Q = o

2 P 0; Q > 0

2a r - a/3 ) 0

2b r - a/3 < 0

3 P0; Q<0
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Case Criteria
4 P > O; Q 0

4a r - a/3) 0

4b r - a/3 < 0

5 P < O; Q 0

6 P 0; Q 0

6a (A - B) - a/3 ) 0

6b (A - B) - a/3 < 0

7 TQ12/37 0 < P 4 3t ; Q > 0 | _'

7a (A + B) - a/3 ) 0 - -

7b (A + 8) - a/3 < 0

8 0 < P 4 3[J; Q < 0

fqj2/3
9 P > 3[J ; I II %.%A.

2 ) ;2 )0

9a XI 0 II

9X2 0 ; X2 < 0 ',_"

9c x<

.'' -.

P . ,,.

I*p ,', ,,
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APPENOIX G ,"

SYMMETRY

Any function, f(x), can be expressed as the sum of a symmetric (even) func-

tion, fE(x), and an antisymmetric (odd) function, fo(x),

• %

fx) f (x) + f(x) Gl]

,-.. ..w

where .5.-

f(x) + f(-x)fe(x) 2 [G2

f(X) = f(x) - f(-x) [03.

V
' From Equations G2 and G3 come the definitions of an even and an odd

function.

E E~
SE(-X) = rex)[4],. -

fo(-x) = W-(x) (G5]

, From the definition of a derivative, and using the notation

lim
L = .G63

we obtain

[fE (-x )  E
-

f E(-x) =L A 'a',

f Lfx - felx) a]..

(-x) f(-x) - fo(-X-Ax),0o-X L If Ax ""'

= L I-f(x) + f=(xA) fo(x) [GB] r.,
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It follows that the even and odd derivatives of even and odd functions are IQ
even or odd according to the table below.

DERIVATIVE
iEVEN ODDIN

FUNTIN EEN EVEN ODD
OD ODD EVEN
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APPENDIX H

MODE SHAPE DETERMINATION

4,

Equations B5, C3, and C4 express the centroidal translation and rotation

of a plane cross section of a circular arch vibrating in a single mode in

separable form,

fu1l
Mi T () = T 

fX1 ,

zk

where, referring to Figure Al _

uI = centroidal tangential displacement, in the direction of increasing 0

u2 = centroidal inward radial displacement

clockwise rotation

r = arch cross-section radius of gyration, defined in Equation A62

T = modal amplitude, a function of time only

X, Y, Z = mode shapes, functions of the arch angle, 0, only

Equation HI is the general definition of a structural vibratory mode, i.e., a

condition in which the relative displacements of all points on the structure

remain constant, and the absolute displacements are proportional to a single

61 scalar function of time. The configuration defined is that of the arch cross-

section centroidal axis, not its neutral axis, because the centroidal axis

location is independent of cross-section rotation.

When the arch undergoes free vibration, Equation C15 shows that the modal
amplitude, T, is harmonic with angular frequency p.

2T + pT = 0 [C15 bis]

Appendix F shows that the three mode shapes, X (for centroidal tangential -

displacement), Y (for centroidal radial displacement), and Z (for plane cross- ii

section rotation) can each be expressed as a linear combination of six mode

functions,

(U) C (W) [H2]
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where

(U) = 3 x 1 column matrix of mode shapes

(W) = 6 x I column matrix of mode functions

C = 3 x 6-rectangular matrix of mode shape coefficients .

Each of the six mode functions, W i (i=I,6), satisfies Equation-E2, which is
a homogeneous, linear, ordinary differential equation with constant coef-

ficients, of order six. Equation E2 is derived from Equations C18, which

are three independent, homogeneous, linear, ordinary differential equations

with constant coefficients, of order two. Equations C18 are the fundamental

equations describing arch free vibration, and Equation E2 was derived from

them for the sake of convenience, to uncouple the system (cf. Equations

C21-C23). However, the price of uncoupling the system is that Equation H2 is

too general. Unless restrictions are placed on the mode shape coefficients,

Equations C18 will not be satisfied. To determine what restrictions must be

placed on the mode shape coefficients, we substitute Equation H2 into Equation

C18 and obtain

2" 2(L + a21) (U) = C(L + a2I)(W) = (0) [H31

where

[c-- [C17 bis] ,

R%4c]

2 E •c - (B16 bis]

and

E = Young's elastic modulus .

p = mass density

R = arch centroidal radius

The six mode functions, W i, are a closed set, in the sense that differen-

tiation of any one mode function yields a linear combination of the other

five. Equations H3 are thus a set of three homogeneous linear equations in

q6
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the six mode functions. But the six mode functions are linearly independent,

so the coefficient matrix in the resulting equations must be the null matrix

(all elements zero), i.e., r
.p* o V

2C(L + a 1)(W) C E (W} (0) [H4]

where ...

CE=0 [5]

However, since Equation E2 already represents all three of Equations C18

taken together, only two rows of Equation H4 are linearly independent. There- 

fore only 12 of the 18 scalar equations represented by Equation H5 are inde-

pendent. Equation H5 therefore yields expressions for 12 of the 18 mode shaoe

coefficients as linear combinations of the remaining 6.

The relative values of the six remaining mode shape coefficients are deter- - J -

mined from the six arch boundary conditions, which take the form '.

B (C) = (0) [H6]

where

(C) = 6 x 1 column matrix of remaining mode shape coefficients

B = 6 x 6 square matrix V

The elements of the B matrix are linear combinations of the six mode func-

tions,.defined in Appendix F, evaluated at an arch boundary, the precise forms

of which depend on the frequency parameter, a. For a nontrivial solution to

Equation [H6] to exist, the determinant of the B matrix must vanish.

IBl = 0 [H7]

When this happens, the frequency parameter, a, corresponds to a natural or

modal frequency.

What makes the arch vibration problem more complicated than some other

structural vibration problems is the fact that the precise form of the L

97 .-



transcendental frequency equation generated by Equation H7 depends on the

frequency parameter, a. Thus in a trial and error solution to find the

natural frequencies and mode shapes of a circular arch, the form of the

frequency equation varies with the trial frequency parameter, a.
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APPENDIX I

ORTHOGONALITY RELATIONS

The basic equations for the mode shapes of a circular arch are

(+ a2 I)(UI ( of [018 bis]

where

2 -E 2+AO -B -(A+8)0 E B

2
L= (A+B)O 80 -A -(BF+E)D (08 bis]

2 2_ 2-ED +BF (BF+E)D CD -BF

and

dO

A C (03 bis]

8B k[(4 bis]
2(1+v)

0=03 {D5 bis]

E 2V3C2  [06 bis]

FRF (0[7 bis]

The constants C1 , C2, and 03 are functions of the ratio of arch depth to

radius, as shown in the table following Equation A58.

To investigate the modal orthogonality relations we evaluate Equation 018

for modes i and j.

+L a2I) (Ul. (01 (11]

+L a I2) fU) (0) C12)

99



'.J '

Premultiplying Equation 11 by JU'j " , and premultiplying Equation 12 by

jU)iT yields

rA

{U T L (U + 2 =0 (13] ,

T2T 2 T("

(uli L (uhj + a. uI ui j 0 [14]

Subtracting Equation 14 from Equation 13 yields.

(Uf i (UIT  U2 21 {uITU = 0
L J_ - {Ul :-a: .

or .
[ i2 - = {u JI _" ((-4T ( _:IT L {I [IS]

.- .-:,*

It remains to be shown that the RHS of Equation 15 is the derivative of a

function which has equal values at 0 = 0 and 6 = 9, so that

(U) TL ( ( L (U). B [161

a rfd
B .(e) 0 17]"

0

If Equations 16 and 17 are satisfied, then integration of Equation 15 on

0 between 0 and 9 yields

[i2 21 J uT dO = e8. dO = [ e8 o = [i18]

0 0

2 2When i 0 j, so that a. 0 a'.2, Equation 18 yields
1 .3..

(UjT(Ujj de = 0 (isj) [19]

0

Thus the ith and jth modes are orthogonal over the closed interval

0 4 6 4 9, provided Equations 16 and 17 are satisfied.

100.
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To prove Equation 16 we expand its LHS using Equation 08, and obtain

B. A [x.xi' - - (A + B) -X. XY. - E .Z - X zi

+ ( + B) fv.x. Y X + B Yi'i Y.Yi O F + E) Y.Z. -Y.Z.

-CZ.xi' - zXji + (BF +. E) fZ.v.- N. [z.z. -z.z}

xx x. + B . >. Y. + C Z.Z.- Z.Zj

-(A 6 ) X + - +

-(BF +E)[YZ Z' YY.z. -

+ E [z~x - zxj - [z'x - I0

Now

- 1x. = x x.+xx. -x. x. - X =x.x. - .X xx.1

and

Z Z. X. Z.X. -Z.X. -Z.X. =Z. X. -Z.X. [112]

Therefore, Equation 110 can be written in the form

13 A {xXJ [xx1 + B - Ky'

+ C Izi1 -(zJj- (A +B) -

101



(BF + E) YZ

+ E z X [z Z Xi [X1 V ]V+.,z'X. (113.
],' ,p%,

Each term on the RHS of Equation 113 is a derivative, so Equation 16 is

proven.
t. .-.

To prove Equation 17 we expand Equations B8 and 89.

F= E A S {61 (B8 bis] .

T) jul

1.5 (DI - G) [u B9 bis)

where, to avoid confusion with symbols already used in this appendix

E* = Young's elastic modulus

A* = arch cross-sectional area

i

Substituting Equations B9 and C3 into Equation B8 yields

EA T E A T)-

*F S (DI -G ) (uj = (DS -SG ) {uj -

- EA T (DS -SG T) IU} I14.

Now

C 0 -2)C 2 2

1k

S 0 2(1 u) 0 (B2,822 bis]

-2C3C c3 0 .'2102"' '3h.

102---..



0 C I  0 . '

SG = 2(1v) 0 2r(l+v) B13 bis]

0 -21rC2  0

so that

C D -C -21/3C2D .-
1 1 2

DS SGT k k D k R
2(1+v) 2(1+v) 2r(1+v) ._

-2/3C2D 21rC2  C3D
2 2 3

AD -A -ED

B 80 -BF [115]

-ED E CD
° -

Now if

IF) = 2 = IN) T =N 2  T [116]
"~ iN3  "K -

[rJ

then substituting Equations 115, 116, and C3 into Equation 114 yields

N =

SA(X- Y) - EZ [117]

- r -- W'

N ER B(X + Y [118]
2 R, .

E AN - E(Y - X) + CZ(19]
3 R j

iq

By rearranging terms, Equation. 113 can be written in the form
r 'ii"rrr, ii"

4.J".

13Bi. X i A X -Yj - EZ'j Xj[A[X' Y. EZ ' ',;

103

--...



1' 1
+ YiB X . - FZ i - YjBYX . - FZ[ii J JL ' 1

+ [4EY. j] + CZ.]] Z[z.[(i x] + Czi'j (120]

Substituting Equations 117, 118, and 119 into Equation 120 yields

B* * ( IT( i {UIT(N .
B. . R {U{NI -U (N (121]O E*A 1 . 1-,"

and substituting Equation 121 into Equation 18 yields

2 21 r jUT( R rIT {UJT{i}IU..a -0.1 I {U.u d6 -- jUI{NJ. - U N =0 (I22],d. = * * j (Ni 12
JJJ" E A o0

0

The conditions under which Equation 122 is valid for i $ j must still be

determined.

Consider the elastic restraint conditions

(NJ ] (} Uf = 0) (123a]

{N) = - {U) (6 = Q) [123b]

Substituting Equations 123 into Equation 122 yields

[ai _ a . J . dO = E A [K] 0 124]

Thus Equations 123 are the conditions under which Equation r9 is valid.

One last task remains to complete the orthogonality analysis. That is to find

the integral of the inner product of a mode shape with itself over the closed

-'. interval 0 4 0 4 Q. When i = j, Equation 122 reduces to the indeterminate

form

- - - - -. . . . . . .



i]
.  

'-. -,

0 J (UI {U. dO = 0 [125]

0 I

As suggested by Rayleigh (Refs. 13 and 14), L'Hospital's Rule can be used to "?'

evaluate the integral in question by considering a set of functions identical ,4.0

in form to Jul and {N), except with a the independent variable instead of 0.

Thus if we set

a. = a [126]

jJ

a = a + da [127]

= (-) 128]
da

IUI = {u) [129]

-• %.%

(uli = (ul , (Ul da [130]

INI = {NJ [131]

(NJi  {N + (Ni da [132]

then applying L'Hospital's Rule to Equation 122 yields -

.~~ ~~ oooIU,T(oo - ]
-a dO " (ITNI - IT(N I

E A 0
0

or

J (ujT{uI dO R -[IT(NJ - NT1 (133]-
2E A a 0

The derivatives with respect to a on the RHS of Equation 133 can be evaluated

as follows. All elements of {Ul and {N have the general form

f f ,2 0 X30) (134]

105
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I~m4.

where

An = n (a) (n = 1,2,3) (135]

therefore

df af -

do ax An (sum on n) 1136]

The derivatives with respect to A are easily evaluated by the chain rule.

af = e af [1371

n n

The derivative of Xn with respect to a can be evaluated by differentiating

Equation E6, which yields

5. 3 -4 -2 -. * . .~(6A5 + 4a 3 + 2bX) A + (aA + PA + c) = 0 [138]

so that

-4 -2 -aX + bx +c
A . 1[1391]'

Xn 2aA, + i

Because of the factor 0 in Equation 137, the RHS of Equation 133 vanishes

at the lower limit, and therefore Equation 133 reduces to

rUTU = R [(I 1140]-I

dO U **, [, [140
U 2E A a. e 9= "..

It is convenient to normalize the mode shapes so that
L:: ~ ~~~~r. = 1.[i4z ,,?

r1 C141]

and in that case ,

T'i" ~~ ~ J(UjTu. dO = 6.[I2 ,"'"
fuliulj i] .6 4..,
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%. %*~
,The orthogonality condition, 142, is used in Appendix J to obtain transient
vibration solutions by expressing both the arch displacements and the forcing

functions in modal series form. See Equations J2 and J3.

IN

%rJ %~
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APPENDIX J

K TRANSI ENT ANALYSIS

Equations 817 and C7 describe the transient response of a circular arch.

The basic equation is

~2

(u) -JI-IL 1u =-Wb (
R pA

Both the displacements and the externally applied loads are assumed to be

expressible in a modal series expansion of the form

'a0

Mu j T.{tJ (J2]

{b)

'a j=l

* where the mode shapes satisfy the relations

2-

LIU). -a oU) = (U)j (no sum) [C16]

* and

TT

Premultiplying Equation J3 by (U).T and integrating on 0 from 0 to 9 yields

H. = (U)T (b)d6 [J41

a' 0

108
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Substituting Equations J2, J3, and C16 into Equation JI yields

pTUpU)j+ 2 . -
- Hi(U) [J51

j=1 j=1 j=1 -

% %..,

Premultiplying Equation J5 by (U)T and integrating on 0 from 0 to Q yields

2•T + p. T i 1AH iJ61
1 I1 pA

so that, assuming

S.(0) (0) = 0 .. --

•L
the solution is

t

T(t) = Hi(T) sin P -(t T)dT 08]
1 pA H() p(

0

Ir l

which completes the formal analysis:

12".-.. .
,.:. :.- :,--
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APPENDIX K

VISCOELASTIC ANALYSIS

The dynamic analysis of a viscoelastic circular arch turns out to be a

fairly simple extension of the results for an undamped elastic arch, when

the rate-sensitive behavior is governed by a single parameter.

When the arch is viscoelastic, Equations A40 and A41 have the forms - -

*o [ a
a =Ee +E = Et +  -[K

(1 2  Gy1 2  12 = 12 G 12 [K.

If we assume that

aG- = tK3] -

E G

then Equations KI and K2 can be written in the form

a1 1 = E (c1 + Cl [K4]

a 12  G (y12 + gY12 ) [K51

and therefore Equation B8 has the form

(F) = EAS (6) + t(S} [K6]

and Equations 817 and C7 have the form

V(u - L (u) + C(iuP= - (b) [K7]

e. 1101
n."-..i a a.

-" "" " a.' " % , """- ,,. ," ,'- = q "" """ "" ""
° , '
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R 6.

Equation C6, which describes free vibration in a normal mode, has the form "

T(U) - (T + )L(U)= (0) [K8]
,.% 8%

and Equations C12 and C14 have the forms

T(m) - (T + U) I- (U) = (0) [K91

T (m) - Ki L {Ui =-()} K1O]

T + tf .R1I -

Equation C15 has the form

T+ tpZT + p2T =0 [K11]

but Equation C16 remains the same.

2
p 2

L (U - - (U) = -(U) [C16 bis]

.

Equations 114 and 116 have the forms

•A *T
(F) E (T + tf)(DS - sGT)(U) [K121

(F) = (T + Cf)lN) [K13]

Equations 123 remain the same, and substituting Equations 123 into Equation

K13 yields

(F) (T YU) K (u) + C(u) (9 = 0) [Kl4a]

(F) - -(T + f YU) -rK (u) + C(u) (0 Q) [K14b]

... .

5.111 .. "
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Thus, in order for the modal orthogonality conditions to remain valid, the

support restraints must also be viscoelastic, with g as the single rate sen-

sitivity parameter. This will guarantee that the form of Equation 124 will

be preserved.

The transient analysis problem is approached by substituting Equations J2

and J3 into Equation K7, which yields

00 00 OD

T.(U}. + p. + (U) = .- (U). IK151

j=1 j=1 j=1

T
Premultiplying Equation [K15] by (U) and integrating on 0 from 0 to Q yields

h fo r p T-= 1--H . [K16]Ti  + p + i - pA i -'---

The form of the convolution integral which is the solution to Equation K16 ._.m

depends on the values of { and Pi. When tPi < 2.0 the modal damping is less

than critical; when Pi = 2.0 the modal damping is critical; and when

CPi > 2.0 the modal damping is greater than critical.

.

-A-% --"I ?..-.;

i :
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APPENDIX L

NUMERICAL ANALYSIS

The most difficult computational phase of the arch modal analysis is finding

the roots of the frequency equation (H7). A sample problem for a Timoshenko ..

beam was solved numerically on the AFWL CRAY. The solution involved eleven

program segments, which were stored in six files. These program segments

are described below. The function used was Equation 5-14 of Reference 2. '.'..'-.

Program TEST

This is the main program in the solution. It performs all of the I/O,

determines the interval and tolerance for root finding, and specifies the

number of roots sought.

Function PRPCOM

This function's purpose is to prepare the common region PARAM, which con-

tains the function parameters C12, C22, R, L, and THETA. The meanings of

these variables are given below, along with the other variables of PRPCOM.

C12 C2  square of longitudinal wavespeed I
1

C22 C square of shear wavespeed K-- -.

R r radius of gyration

L L length of beam

E E beam modulus of elasticity

G G beam elastic shear modulus

RHO p beam density

I I beam moment of inertia

KPRIME K' shear deformation coefficient

RBIG R rotational beam-end restraint

THETA e EI/RBIG

113
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Subroutine ZEROIN

This is a modified version of the ZEROIN routine found in Reference 16. The

modifications were. necessary to allow the routine to search for more than

one root. The roots are stored in the array ROOT as they are found, and the

routine continues searching until it ;ias found the desired number of roots,

or until it cannot find any more. For a discussion of the methods used to

find the roots, see Reference 16. %

.

Function SGN

This simple function returns 1.0 if its argument is positive, 0.0 if the

argument is zero, and -1.0 if the argument is negative. This is used by

ZEROIN.

Function G

This routine uses deflation to allow ZEROIN to find more than one root of

the function. Deflation is a technique by which previously found roots are

eliminated, but other roots remain. The basic idea is to find the roots of

g(x) = f(x)/Tl(x - ri), where ri indicates a previously found root, and "I

denotes a product. In thisway, the roots are eliminated. Note that extreme

care must be taken when evaluating the function at points close to a pre- "

vious root.

Function FACT

This simple function returns the factorial of its integer argument. It is

used by Function G.

Function F

This is the function whose roots are of interest. The function parameters . ..

are contained in the common region PARAM. For the trial function they were

used to find XI ( ) and GAMMA (y), which are used to find KI and K2. The

function is then evaluated piece by piece, since it is quite complicated.

Function F1 I-

This function is used to find XI and GAMMA.

Function F2

This function is used to find KI and K2. ,-

Ref. 16. Forsythe, G. E., M. A. Malcolm, and C. B. oler, Computer Methods for

Mathematical Computations, Prentice-Hall (1977).
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Function DERIV

As mentioned above, care must be taken when evaluating the function g(x)

f(x)/i(x - ri ) near x r i, a previous root. At such a point, L'Hospital's

Rule must be applied. This means that the derivative of f(x) at x = r, must

be found. This function calculates the nth derivative of f(x) at some

point.

A Closer Look at G and DERIV

As mentioned above,

g(x) a f(x)/T(x - ri)

where f(x) is the function of interest and ri is a previously found root.

This definition allows us to ignore all previous roots without losing an.-

others. A simple example will help illustrate. If

f(x) a (X-1)(X-2)(x-3) [L2] .. . -

then the roots are x = 1, 2, 3. Suppose that in our first search we find

that x = 3 is a root. Then

g(x) a [(x-1)(x-2)(x-3)]/(x-3) = (x-1)(x-2) L3]

We have eliminated the root x = 3, but have retained x = 1 and x = 2, so

that one of them will be discovered. Note that once all the roots have been

discovered, g(x) , so no more roots will be mistakenly discovered.

This method works equally well for functions other than polynomials, but it

is more difficult to demonstrate. The problem with the method is that when

ZEROIN tries to evaluate the function at a previous root, it obtains

g(x) a f(x)/(x-ri) = 0/0 [L4]

which the computer cannot evaluate. However, through the application of

L'Hospital's Rule, we obtain

g(x) a f(x)/n(x - ri) L5 f'(x)/ - x [ 5]"
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The method used to compute derivatives is quite simple. It is based on the

slope interpretation of the derivative:

df t 
=" f(xO + Ax) - f(x0 - Ax)

dx x=x0  2Ax [Ld.

or
f(x -•i~1 ) - fix 1 - h) (7

h (0]

where x1 = x0 + Ax, h = 2Ax.

Higher order derivatives are found simply from lower order derivatives

(n-1) Id(n-1)1
df(n) [d(n-1)x x = x1  d(n-1) x = X1 h I

d~ (n)Xi L81
d''x jx = x0  h

This procedure is implemented easily using the array DFNDNX• In the first

step of the routine, enough points (n + 1) are chosen to evaluate the nth

derivative. The points are evenly spaced (h is the interval width for adja-

cent points), and the point at which the nth derivative is desired is at the

midpoint of the interval. As the points are chosen, the function is eval- ,.

uated at each point; and these values are stored in DFNDNX(1,i), i = 1,

n + 1. In the third step, each adjacent pair of values is Used to compute a

single value for the derivative. This step is repeated until there is only

one value. This is the nth derivative.

For example, if f(x) x3 + x2 + x, and the 4 th derivative of f is desired at

x 1.0, then DFNoNX will contain (if h 0.01)

,.11.

.1..-.,
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OFNONX ,.t.,
OFND 1 2 3 4 5

f(.98) f'(0.985) f''(0.99) f''' (0.995) fiv(1.00)

1 2.8816 5.8807 7.9400 6.0000 0.0000

f(.99) f'(0.995) f''(1.00) f''' (1.005) . . . .

2 2.9404 5.9601 8.0000 6.0000

f(1.00) f'(1.005) f''(1.01) . . .
3 3.0000 6.0401 8.0600

f(1.01) f'(1.015) . ..

4 3.0604 6.1207

f(1.02) . . . .

5 3.1216

-'These values are correct, since

f'(x-) = 3x2 + 2x +

.4

f"(x) = 6x + 2

f' =(x) 6 4
'% .

fiV(x) = 0 4.., ,

Values for less well-behaved functions will have greater error.

Solving for Roots of Other Functions

When seeking the roots of other functions, the user should use the function .

f to compute the function. Any necessary parameters can be calculated or

assigned in PRPCOM, and passed through the common region PARAM. The func-

tion f must be a function of one variable. The user must be aware of the

.4 meanings of the arguments of ZEROIN. 4.

a .the lower bound of the interval

b the upper bound of the interval

f the function of interest

S. tol the tolerance (maximum uncertainty) of the independent . ,

variable (root)

'1 1 7
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nroot the number of roots desired *:'* ':

root the roots

iroot the number of roots found

Thus, in order to solve another function, both f and PRPCOH must be rewrit-

ten, as must lines 9-14 of-TEST. All other code is completely compatible.

118. q.
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real function deriv~f,n~x~h)
implicit naoe..
real f,xph
integer n
common /machin/ eps
real epa

C external fndeps .
C
o n cannot be greater than 10 unless array dimensions are increased
C

real xl(l1),dfndnx(ll,11)4.%
real tal,xtemp. dfn, dnx
integer i,j,maxj

C

if(eps.eq.0.0)call fndeps
to1=2. 0*eps~x
xltl)zx-(float(n)/2.0)*h
xtempxl(l)
dfndnx(l, 1);f~xtemp)

c

do 10 i=2,n+1

xtemp=xl~i)
dfndnx(l, i )f(xtemp)

10 continue
C

do 15 i1l,n+1
15 continue

C

do 30 i2,r,4
maxi sn+2-i
do 20 j1l,maxj
dfndnx(i,j)=dfndnx~i-l,j+l)/h-dfndnx(i-1,j)/h

20 continue
30 continue

c
do 50 i:1,n+1

50 continue

derivzdfndnxC n+1, 1)
return
end

subroutine fndeps

common /machin/ eps

real epa
real tol

epsl. 06
10 ePseops/2.0

tolzl. 04eps
if(tal.gt.1.0)goto 10

mC
- return

end -
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real function f(p)
implicit none
real p

C
common /param/ c12,c22,r,l,theta
real c12,c22,r,l,thata

C
real fl,f2
external fl,f2

C
real xi,gammsa,kl,k2
real fsign,temp
real xil, gl, cl,co2,co3, co4,co5,co6 ,tlvtZ, t3,t4

C
f0O.C
if (p.eq.0.C)goto 99
fsigna-l.0
xifl(fsign, p) h

fsignz+1 .0 V
S ~gammarfl~fsign,p) . ~

C
fsignz-l .0
tempxi
klf2(fsignotemp,p)
fsign=+l.0 O

S.,.tempgamma

kZzfZ(fsign,temp,p)

xilzxi~l
* if (xil.gt.5000.0)xil=5000.G

gl gamma~l
C

C0122.0
co2z2. Nthata*(gamma+xi~k2/ki)
co3z2 . 0thota*Cxi+gamma~lkl/kZ) -'

cof:2. 0*theta~theta3Igamma~xi
co5=(k2/kl)*(l .0+((theta~xi)**2)) p--

co6r(kl/k2)*NCtheta~gamma)**2)-l .0)

S. - tlzco*( l-cosh~xil )*cos(gl))
t2sco2*cosh(xil)xsin(gl)
t3zco3*sinh(xil)*coa(gl)

c
fztl+t2-t3+t.

99 continueVA
-~ -e return
S. - end

real function fl(s,p)



real cl, 2,~~ht

real tl,t2,t3,t4,t5
c

tlzsX(l.0/cl2+l.0/c22)Np~p/2. 0
*22(1 .0/c22-l.0/clZ)MCp3E4)/4.0
t3=2*24* 2,
t5zt1+sqrt( *4)

c
11 sqrt( *5)

C

return
end

real function f2(s,t,p)
real s,t,p

c
common /paran/ c12,c22,r,l,theta
real clZ,cZ2,r,l,thea e

real tl,t2,t3,t4A

tlzc22/(r~r)
t2ztl-rhomrho
tS:sXcl2*t~t
t4=tl~t

C

f2z t2+t3)/t4
return
end

real function g(f,x~root,nroot)
implicit none
real f,x '~-

- real root(*)
integer nroot
external f

c

external fndeps
common /machin/ Bps
real eps

c real denyvVA
a integer fact

external deriv,fact
C

If
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S.. real tol,h
* integer j,n,nfact

logical atroot ~
S.. c

if Ceps.eq.0.0) call fndeps
5' ~~tol absC 2. 0*eps~x) . '

5' if (tol.lt.ops) toleaps .

C
atrootu false.
n:0, 4
do 10 ic1,nroot
if~abs~x-root(i)).gt-tol) goto 10
n=n+ 1
atroot=.true.

* 10 continue -

c
nfact fact Cn)

5. h=0. 001
S. write(7,100)nfact

100 formatC' evaluating limit',i5)
if Catroot) gder-jv(f,n,x,h)/float(nfactl
if (,not.(atroot)) gzf(x) .

C
do 40 i~l,nroot

if (abs~x-root(i)).lt.tol) goto 40
write(7,200)

5'200 format(' deflating function')

5'5'40 continue
c return

end

5'integer function fact~n)
integer n

C
integer i

C
factzl
do 10 i=2,n

S.. factzfact3(i

10 continue
return
end

real, function prpcom~dummy)
implicit none
real dummy

C

FI. 11r
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common /param/ cl2,c22,r,l,theta
real c12,c22,rl,theta

c
real *,o,rho,b,i,kprime,rbig

c
e=4.08e06
gzl.70eO6
rho=2. 247 0-04
rzl.386
bsl.0
1:48.0
i=9.216
kprime=0 .822467
rbigl1.0&06

c
thataze~i/r
ci 2:a/rho
c22=kprime~g/ rho

prpcoMzgqrt( c22/ Cr~r))
c

'N, C
return
end

* subroutine zerajn~ax,bx,f,tol,nroot,root,iroat)
implicit none
real ax,bx,f,tol,roatCM)
integer nroat,jroat

c
external fndeps

*common /machin/ eps
'N real eps

real g,sgfl
external g,sgn .

c
real a,b,c,d,e
real toll,xm

-real fa,fb,fc
real p,qjros.

c
c' compute eps, the relative machine precision

if (eps.eq.0.O)call fndeps AA..

c~ initialization

iroot0O
aax

123 'N.
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c bzbx

15 famg~f,a,rootpjroot)
begin tp b,rootpjroot)

C

20 cza

db-a

30 if (abs~fc).g*.abs~fb)) goto 40
azb
b~c
cza
fa =fbp fbfc
fc fa

C

c convergence test

40 tol2.0mepsxabs(b)+0.5xtol

if (abs~xmX.le.toll) goto 90
if (fb.eq.0.0) goto 90

c

c is bisection necessary?
C

if (absC.).lt.toll) goto 70
if Cabs~fa).lo.abs~fb)) goto 70

C

is quadratic interpolation possible?
if Canec) goto 50

c linear interpolation
C

szfb/fa
PzZ. O*xm~sN q= .0-s
goto 60

C

50 qfa/fc
rz=fb/ fc
sfb/fa
pzsXC2.0*xmNq*Cq-r)-(b-a)*Cr-l .0))

c~ adjust signs 0

60 if Cp.gt.0.0)qs-q

c is interpolation acceptable?

p.f CC2.0*p).ge.C3.0*xm~q-absCtoll~q))) goto 70
if Cp.go.abs(0.5*e~q)-) goto 70
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dx.4.

got4 so
'4.'

0~~. c iscto

I

c bimpetonto
c

80 azb
* Ifa = b

if (abs(d).gt.toll)bb+d
if (abs(d).le.toll)b6b+sjgn(toll,xm)
fb~g(1'.b, root,iroot)
if ((fb3(fc/abs~fc))).gt.0.C) gOtO 20

cgoto 30
e done
c
90 if (sgn(fa)-ne.sgn(fb))goto 95

if (sgn(fc).ne.sgn(fb))goto 95
if. (fb.eq.0.O)goto 95
returnn

c
95 jrootziroot+1

root(iroot) b
if (iroot.eq.nroot)return

c
. aax

babx
goto 15
end

real function sgn~a)
implicit none

P, real a
if (a.eq.0.0) goto 10
sgnza/abs( a) .

return10 sn=.
return ~
and nd

prgamts

imlii nn

% 

-
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open~unit=7, file'loutput')

a=0.0
wprimeaprpcomC dummy)

nroot=20
call zerojn~a,wprim.,f,tol,nroot,roi:.iroot) eI writeC7,90)iroat

*do 10 ilI,iroot ,
* wrjtaC7, 100)root~i)

10 cniu
c

90 forma*C' ztroir, found ',i5, 'roots')

100 format(a1Z.6)
stop

and

zeroin found 8 roots
0.0000000+00
0. 0000000+00
0. 142336e+05
0. 369554o.*04I 0. 1'72'4.+04
0.750657.eOS
0. 202099e+03
0.288620.402

%
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